

Energy-Serie, DN10-DN80 (DN100 Ultra)

Anwendung

Die LOGICA Digital Energy-Serie ist ein digitaler Stellantrieb zur Optimierung der Energienutzung in Heizungs-, Lüftungsund Klimaanlagen (HVAC).

In Verbindung mit einem OPTIMA Compact-Ventil ermöglicht es eine intelligente Regelung und bietet einen Einblick in die Hydronik.

Der Stellantrieb vereinfacht die Systemintegration – von der einfachen Installation über die direkte Kommunikation mit der Gebäudeleittechnik (GLT) bis hin zu den wählbaren Regelungsmethoden für unterschiedliche Anwendungen.

Integrierte Algorithmen und Funktionen für das Energiemanagement reduzieren die Systemintegrationszeit erheblich.

Merkmale

- BACnet-MS/TP- & Modbus-RTU-Unterstützung
- Einfache Adressierung über DIP-Schalter
- 1 Eingang mit Unterstützung für Binär-Input, 0–10 V oder Pt1000
- 1 universeller Eingang/Ausgang mit Unterstützung für Binär-Daten, 0–10 V in, Pt1000, 0–10 V out oder 0–10 V Positionsrückmeldung
- Vollständige integrierte OPTIMA Compact-Ventilbibliothek.
- Auswählbare Kennlinie: Linear oder EQ%
- Volumenstromanzeige
- Thermische Leistungsanzeige (in Kombination mit 2 Temperatursensoren)
- Anzeige des thermischen Energieverbrauchs
- Auswählbare Steuerungsmodi:
 - Analog 0–10 V
 - Externer GLT-Sollwert
 - Rücklauftemperatur
 - Thermische Energie
 - Raumtemperatur
- Energiemanagementfunktionen
- Regelung der Mindest-Delta-T
- · Begrenzung der Ausgangsleistung für Endgeräte
- Begrenzung der Rücklauftemperatur
- Nennhub von bis zu 20 mm.
- Auto-Kalibrierung für alle Nennhübe
- Stellungsanzeige am Stellantrieb
- Kurzschluss- und Verpolungsschutz
- Programmierbare planmäßige Ventilspülung und -betätigung
- Kompakte Bauweise

Zulassungen

- Konformität: EMV-Richtlinie 2014/30/EU Niederspanungsrichtlinie 2014/35/EU
- Schutzart IP54 (EN60529)
- Schutzart III (EN 60730)
- Überspannungskategorie III
- Kontaminierungsstufe: 2
- RoHS 2011/65/EU

1

Energy-Serie, DN10-DN80 (DN100 Ultra)

Technische Daten

Betriebsspannung: $24 \text{ V AC/DC} \pm 10 \%$

Steuerung: Modbus RTU/BACnet MS/TP

Feedback-Signal:0-10 V DCSchutzart:IP 54Frequenz:50/60 Hz

 Einschaltstromstärke:
 DC 5,0 A; AC 7,2 A

 Kraft:
 150 N (DN10-DN32)

 500 N (DN40-DN80)

Geräuschpegel: unter 31 dBa

Umgebungsbedingungen: Temperatur 0 °C–50 °C

Luftfeuchtigkeit 10-85 % r.F.

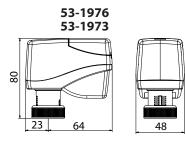
Netzkabel/Bus: 1,5 m 2 x 2 x 0,5 mm² isoliert

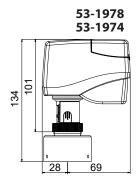
Eingabe-/Ausgabekabel: 4 x 0,5 mm² (53-1976/53-1978/53-1972)

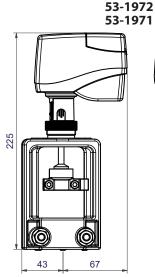
2 x 2 x 0,25 mm² (53-1973/53-1974/53-1971)

Typen und Betriebsdaten

	Ventilabm.	Gewicht [kg]	Hub/ Laufzeit**	Kraft des Stell- antriebs [N]	Strom- verbrauch AC/DC	Konfiguration	Kabellänge Eingang 1 / Eingang- Ausgang 2	ArtNr.
	DN10-DN32	0,34	2,5–5,5 mm/ 22 Sek./mm	150	(4,2*) 3,1 VA / (2,2*) 1,6 W	Stellantrieb mit 2 "Flying Wires" – 1x Strom/Bus, 1x für 2 externe Geräte	1,5 m kombiniert	53-1976
	DN10-DN32	0,34	2,5 5,5 mm/ 22 Sek./mm	150	(4,2*) 3,1 VA / (2,2*) 1,6 W	Stellantrieb mit "flying" Strom-/Buska- bel und umspritztem ∆T-Kit mit 2 am Gehäuse montierten Pt1000-Sensoren	1 m / 1,5 m	53-1973
	DN40-DN50 DN50 Ultra	0,60 (mit Adapter)	15 mm/ 22 Sek./mm	500	(9,0*) 4,8 VA / (4,7*) 2,5 W	Stellantrieb mit 2 "Flying Wires" – 1x Strom/Bus, 1x für 2 externe Geräte	1,5 m kombiniert	53-1978
	DN40-DN50 DN50 Ultra	0,60 (mit Adapter)	15 mm/ 22 Sek./mm	500	(9,0*) 4,8 VA / (4,7*) 2,5 W	Stellantrieb mit "flying" Strom-/Buska- bel und umspritztem ∆T-Kit mit 2 am Gehäuse montierten Pt1000-Sensoren	1 m / 1,5 m	53-1974
	DN50-DN80 DN65-DN100 Ultra	1,40 (mit Armatur)	20 mm/ 22 Sek./mm	500	(9,0*) 4,8 VA / (4,7*) 2,5 W	Stellantrieb mit 2 "Flying Wires" – 1x Strom/Bus, 1x für 2 externe Geräte	1,5 m kombiniert	53-1972
	DN50-DN80 DN65-DN100 Ultra	1,40 (mit Armatur)	20 mm/ 22 Sek./mm	500	(9,0*) 4,8 VA / (4,7*) 2,5 W	Stellantrieb mit "flying" Strom-/Buska- bel und umspritztem ∆T-Kit mit 2 am Gehäuse montierten Pt1000-Sensoren	1 m / 1,5 m	53-1971


^{*)} Max. Stromverbrauch – zur Wandlerbemessung

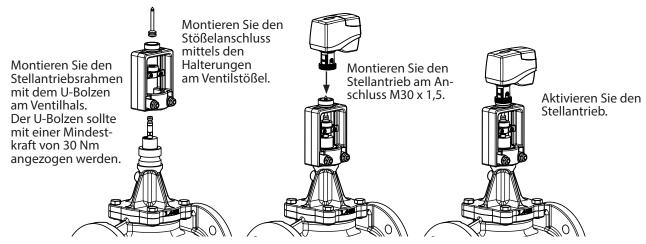

^{**)} Standardwert – auswählbar in der Firmware, siehe Integrationshandbuch



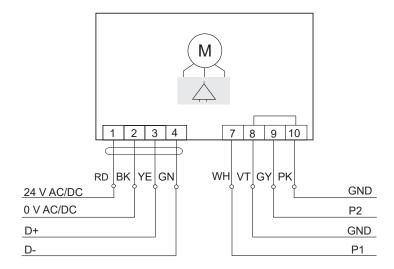
Energy-Serie, DN10-DN80 (DN100 Ultra)

Abmessungen [mm]

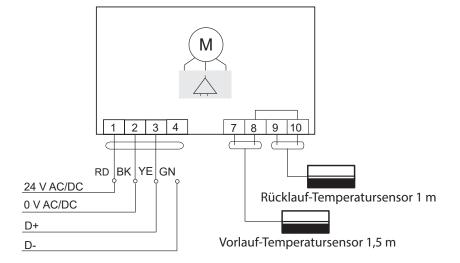
Montagepositionen


Montage von Stellantrieben an OPTIMA Compact DN40-50 & Ultra DN50

Ersetzen Sie den Ventilstößel durch den Stößel, der im Lieferumfamg des Stellantriebs enthalten ist. Nehmen Sie die Voreinstellung des Volumenstroms vor, bevor Sie den Stößel fixieren.



Energy-Serie, DN10-DN80 (DN100 Ultra)

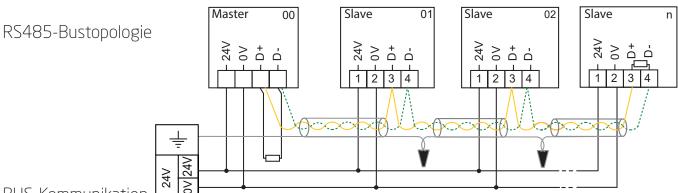

Anschlussdiagramm

53-1972 53-1976 53-1978

Anschlussdiagramm

53-1971 53-1973 53-1974

Allgemeine Installationsanweisungen:



- Wenn zwei Netzteile verwendet werden, müssen diese die gleiche Polarität und eine gemeinsame Masse aufweisen.
- Für alle Geräte im selben Teilnetz, einschließlich Router und Gateways, muss eine gemeinsame Masse verwendet werden
- Für gebäudeübergreifende Segmente ist eine galvanische Trennung vorzusehen.

Energy-Serie, DN10-DN80 (DN100 Ultra)

BUS-Kommunikation

Schnittstelle	EIA-485 / RS-485*				
Übertragungsart	Modbus RTU & BACnet MS/TP**				
Unterstützte Baudraten	9600, 19200 **, 38400, 57600, 115200 Bit/Sek.				
Start-/Stopp-Bits	8N1(BACnet-Standard), 8E1 (Modbus-Standard), 8N2, 8E2, 8O1, 8O2				
Anzahl der Busteilnehmer	Bis zu 32 empfohlen, max. 64				
Bus-Last	1/8 Einheitenlast				
Anschluss	Im Gerät schaltbar, 120 Ohm				
Bias network	Im Master einzustellen				
Empfohlenes Kabel	Verdrilltes Zweidrahtkabel mit Abschirmung (charakteristische Impedanz ca. 120 Ohm)				
Bei Bustopologie mit 115.200 Baud	Empfohlene max. Kabellänge 500 m				
Bei Bustopologie mit 38.400/57.600 Baud	Empfohlene max. Kabellänge 750 m				
Bei Bustopologie mit 9.600/19.200 Baud	Empfohlene max. Kabellänge 1.000 m				
Stichleitungen	Max. Leitungslänge 2 m				
	Code	Funktion			
Untoustüteta Madhus Funktionssadas	0x03	Halteregister lesen			
Unterstützte Modbus-Funktionscodes	0x06	Halteregister schreiben			
	0x10	Multi-Halteregister schreiben			

^{*)} Die Verkabelung von BACnet MS/TP oder Modbus RTU (RS-485) muss in Übereinstimmung mit der geltenden Norm ANSI/ TIA/EIA-485-A-1998 durchgeführt werden.

LED-Statusanzeigen

Die Status-LED befindet sich unterhalb der Inspektionsabdeckung unter der Klemme. Sie zeigt den Betriebszustand des Stellantriebs an.

Die Status-LED ist auch bei geschlossener Inspektionsabdeckung sichtbar.

DIP-Schalter

HINWEIS: Auslieferungszustand:

Die Stellantriebe werden ab Werk in der Montageposition (Stößel vollständig zurückgezogen, Ventil offen) und mit Schaltern 1 bis 8 in Schalterstellung OFF geliefert.

Status-LED	Beschreibung		
Grün, stetig leuchtend	Normaler Betrieb		
Grün – schnell blinkend	Alle Schalter 1 bis 6 sind auf OFF gestellt.		
Grün – langsam blinkend	Initialisierungsdurchgang		
Grün blinkend (während Datenübertragung)	Modbus-/BACnet-Kommunikation		
Gelb blinkend	Manuelle Einstellung des Ventils/Stellantriebs erforderlich		
Rot blinkend	Ventilanpassungsfehler		
Aus	Stromzufuhr unterbrochen		

^{**)} Standardeinstellung

Energy-Serie, DN10-DN80 (DN100 Ultra)

DIP-Schaltereinstellungen

DIP-Schalter-Nr.	Funktion-AUS-Stellung	Funktion-EIN-Stellung		
1	BIT 0 = 0	BIT 0 = 1		
2	BIT 1 = 0	BIT 1 = 1		
3	BIT 2 = 0	BIT 2 = 1		
4	BIT 3 = 0	BIT 3 = 1		
5	BIT 4 = 0	BIT 4 = 1		
6	BIT 5 = 0	BIT 5 = 1		
7 *	BACnet	Modbus		
8	Abschlusswiderstand inaktiv	Abschlusswiderstand aktiv		

- *) Durch Umschalten des Schalters 7 für 1 Sekunde wird die Baudrate auf die Standardwerte zurückgesetzt:
- 19200 8-N-1 für BACnet, DSW7 = AUS
- 19200 8-E-1 für Modbus, DSW7 = EIN

	BIT 5 [32]	BIT 4 [16]	BIT 3 [8]	BIT 2 [4]	BIT 1 [2]	BIT 0 [1]	Adresse
	0	0	0	0	0	1	1
Schalter 1 bis 6: Einstellung der	0	0	0	0	1	0	2
Modbus-Adresse	0	0	0	0	1	1	3
modbas / talesse	0	0	0	1	0	0	4
Die sechs	0	0	0	1	0	1	5
Schalter dienen	0	0	0	1	1	0	6
zur Einstellung der Adresse in	0	0	0	1	1	1	7
binärer Form.	0	0	1	0	0	0	8
billarer romi.	0	0	1	0	0	1	9
Der gültige	0	0	1	0	1	0	10
Adressbereich	0	0	1	0	1	1	11
ist 1 bis 63.	0	0	1	1	0	0	12
	:	:	:	:	:	:	:
	1	1	1	1	1	1	63

Informationen zur Modbus-Inbetriebnahme finden Sie in der **Modbus-Integrationsanleitung**. Informationen zur BACnet-Inbetriebnahme finden Sie in der **BACnet-Integrationsanleitung**.

Frese Armaturen GmbH übernimmt keine Haftung für etwaige Fehler in Katalogen, Broschüren und anderen Drucksachen. Wir behalten uns das Recht vor, unsere Produkte ohne vorhergehende Ankündigung zu ändern. Dies gilt auch für bereits bestellte Produkte, sofern die bestehenden Spezifikationen durch die Änderung unbeeinflusst bleiben. Alle Warenzeichen in diesem Dokument sind Eigentum der Frese Armaturen GmbH. Alle Rechte vorbehalten.

Frese A/S

info@frese.dk

Tel: +45 58 56 00 00