

Evaluation of pump energy consumption for two principles for hydraulic balancing and control of cooling systems

DANISH TECHNOLOGICAL INSTITUTE

Evaluation of pump energy consumption for two principles for hydraulic balancing and control of cooling systems

Prepared by Teknologisk Institut Gregersensvej 1 2630 Taastrup

March 2020 Author: Kristian Kærsgaard Hansen & Otto Paulsen

Page 2 | Evaluation of pump energy consumption for two principles for hydraulic balancing of cooling systems

1. Contents

2.	Introduction	4
3.	Server room	5
4.	Comfort cooling – cooling ceiling	8
5.	Conclusion	12
6.	Appendix the 4 diagrams	13

2. Introduction

FRESE A/S has asked DTI to evaluate two strategies for larger hydraulic cooling systems – in terms of pump energy consumption.

Two examples have been chosen, both using water as cooling fluid:

- 1. A server room including battery pack and several cooled racks
- 2. A comfort cooling system with cooled ceiling panels

The strategies considered are:

- Hydraulic balancing using "static" valves + one differential pressure controller for the network. In order to measure and adjust the flow, some pressure drop is needed in the static valves.
- Hydraulic balancing using "dynamic" valves mounted at each cooling device. The dynamic valve is a combined differential pressure controller and control valve. This system is in a wide range independent of the flow and pressure conditions in the network and further valves in the network are not needed.

To quantify the energy consumption some operation profiles are needed. At part load the water flow rapidly decreases. To take this into account the figure 1 is used. The relation between flow and cooling load is calculated based on traditional heat exchanger theory.

The Grundfos product center dimensioning is used for the calculation of annual savings. The Grundfos system allows for user defined load profiles.

Figure 1 Simplified relation between flow of cooling fluid and cooling load for a server-roomcooler. 50% load needs 20% flow. The calculation of the relation is based on heating up the cooling water by 5 K at max. load and 20 °C in the room. The curve is also assumed to be valid for comfort cooling.

The assumption is that the load differs from day to night, due to the load on server capacity. At 50 % cooling load in the night, the flow is calculated to 20%.

3. Server room

Figure 2 Server room static valves

Figure 3 Server room dynamic valves

Sizing result									
Type MAGNA3 65-150F			Load profile	Load profile					
Quantity 1				1	2				
Motor			Flow	100	20	%			
			Head	100	43	%			
Flow	31	m³/h	P1	1.372	0.211	kW			
Head	110	kPa	Eta total	69.0	38.6	%			
Power P1	1.373	kW	Time	4380	4380	h/a			
Eta pump+motor	69.0	%=Eta pump * Eta motor	Energy consumption	6012	925	kWh/Year			
Eta total	69.0	%=Eta relative to the duty point	Quantity	1	1				
Energy consumption	6936	kWh/Year							
CO2 emission	3950	kg/Year							
Price	28.635,00	DKK							
Life cycle cost	320617	DKK/15Years							

Table 1 Pump selection for the static balanced and controlled system. The part load head is estimated, based on the assumption that the total pressure drop at 20% flow in the pipes and the static valves is negligible, while the pressure drop across the control valve is maintained.

Sizing result						
Type MAGNA3 80-100F			Load profile			
Quantity 1				1	2	
Motor			Flow	100	20	%
			Head	100	34	%
Flow	31	m³/h	P1	0.859	0.096	kW
Head	65	kPa	Eta total	65.2	39.5	%
Power P1	0.859	kW	Time	4380	4380	h/a
Eta pump+motor	65.2	%=Eta pump * Eta motor	Energy consumption	3761	420	kWh/Year
Eta total	65.2	%=Eta relative to the duty point	Quantity	1	1	
Energy consumption	4181	kWh/Year				
CO2 emission	2380	kg/Year				
Price	28.810,00	DKK				
Life cycle cost	204826	DKK/15Years				

Table 2 Pump selection for the dynamic balanced and controlled system. The part load head is estimated, based on the assumption that the total pressure drop at 20% flow in the pipes is negligible, while the pressure drop across the control valve is maintained.

Static balanced and controlled	Day	Night	
Load %	100	50	
Flow m³/h	31	6,2	
Head kPa	110	47	The calculation shows a pump energy consumption
Operation hours	4380	4380	of app. 7000 kWh per year in a static balanced and controlled system for an evenly distributed day and
kWh/year	69	36	night-time operating cycle.

Dynamic balanced and controlled	Day	Night	
Load %	100	50	
Flow m³/h	31	6,2	
Head kPa	65	22	The calculation shows a pump energy consumption
Operation hours	4380	4380	of app. 4200 kWh per year in a dynamic balanced and controlled system for an evenly distributed day
kWh/year	41	81	and night-time operating cycle.

Table 3 Results for the server room. The pump energy savings are 40 % when changing from static to dynamic balanced and controlled system.

Energy consumption for pump: 651 kWh/year **>** M ^{10 kPa} Cooling Ceiling TEKNOLOGISK 20 kPa Differential pressure control valve X Static balancing valve M 20 kPa 10 kPa Static control valve Cooling Ceiling 10 kPa Pump M 20 kPa 15 kPa 10 kPa k R Cooling Ceiling \bowtie 10 kPa =)//)= 10 kPa ٩ 10 kPa Cooling Ceiling Flow 2,1 m3/h Head loss in dstribution piping 10 kPa M 20 kPa 10 kPa Pipes and valves main piping 10 kPa Cooling Ceiling 20 KPa = 10 kPa Total head loss 95 kPa M 20 kPa 10 kPa Cooling Ceiling 10 kPa M 20 kPa 10 kPa Cooling Ceiling \bowtie / 8,6 m⁹/ =|)/)= 10 kPa M M Comfort cooling Static balancing design 27-2-2020 ver. 3 10 kPa 20 kPa Cooling Ceiling Flow 2,1 m³/ Cooling load 100 kW Flow 17,2 m³/h Kristian K. Hansen

4. Comfort cooling – cooling ceiling

Figure 4 Comfort cooling static valves

Figure 5 Comfort cooling dynamic valves

The cooling load is controlled by changing the flow, assuming a constant cooling water temperature. The load is taken from a cooling degree-days distribution from southern Europe, see figure 6. Source: https://www.degreedays.net

The load uses 10-degree daily average as base. Danish Technological Institute assume that many buildings will need some cooling, due to internal and passive solar load from a 10-degree daily average.

Figure 6 The load distribution is assumed to follow the cooling degree days for Lyon, basis 10 °C, 221 days

	Bin 1 Bin 2						Bin 3					Bin 4									
Degrees	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Days	28	25	16	16	15	12	18	9	14	11	6	14	13	5	4	3	4	1	4	2	1

Table 4 Load distribution divided in 4 bins, 5, 11, 19 and max 23 K temperature difference to a chosen basic temperature of 10 $^{\circ}\text{C}$

							Static Bal.	Dynamic Bal.
Bin	Delta T	Days	Hours	% load	% Flow	Flow m ³ /h	Delta	ı P kPa
1	5	100	2400	21,7	9	1,5	35,5	30,2
2	11	84	2016	47,8	20	3,4	37,4	30,8
3	19	36	864	82,6	50	8,6	50,0	35,0
4 (max)	23	1	24	100,0	100	17,2	95,0	50,0
Min = pres	sure drop o	35,0	30,0					
Total		221	5304					

Table 5 Load distribution for the pump, static and dynamic balancing. The flow needed is taken from figure 1.

Sizing result										
Type MAGNA3 50-180F			Load profile							
Quantity 1				1	2	3	4			
Motor			Flow	9	20	50	100	%		
			Head	37	39	53	100	%		
Flow	17.2	m³/h	P1	0.09	0.112	0.223	0.711	kW		
Head	95	kPa	Eta total	16.4	31.6	53.5	63.8	%		
Power P1	0.712	kW	Time	2400	2016	864	24	h/a		
Eta pump+motor	63.8	%=Eta pump * Eta motor	Energy consumption	216	225	193	17	kWh/Year		
Eta total	63.8	%=Eta relative to the duty point	Quantity	1	1	1	1			
Energy consumption	651	kWh/Year								
CO2 emission	371	kg/Year								
Price	27.265,00	DKK								
Life cycle cost	54675	DKK/15Years								

Table 6 Sizing. This pump in a static balanced and controlled system has an annual consumption of 651 kWh/ year.

Sizing result								
Type MAGNA3 40-120F			Load profile					
Quantity 1				1	2	3	4	
Motor			Flow	9	20	50	100	%
			Head	60	62	70	100	%
Flow	17.2	m³/h	P1	0.054	0.071	0.138	0.391	kW
Head	50	kPa	Eta total	23.4	41.2	60.5	61.1	%
Power P1	0.391	kW	Time	2400	2016	864	24	h/a
Eta pump+motor	61.1	%=Eta pump * Eta motor	Energy consumption	129	142	119	9	kWh/Year
Eta total	61.1	%=Eta relative to the duty point	Quantity	1	1	1	1	
Energy consumption	400	kWh/Year						
CO2 emission	228	kg/Year						
Price	15.935,00	DKK						
Life cycle cost	32765	DKK/15Years						

Table 7 Sizing. This pump in a dynamic balanced and controlled system has an annual consumption of 400 kWh/ year

The conclusion for the cooling ceiling is a reduction in annual consumption for the pump from 651 to 400 kWh, or 39% when changing from a static to a dynamic balanced and controlled system. The gross price of the pump is 41% lower in a dynamic system.

Cooling load controlled by cooling water temperature, assuming a constant flow. This is the other extreme, with no individual control of the ceiling panels.

Sizing result					
Type MAGNA3 50-180F			Load profile		
Quantity 1				1	
Motor			Flow	100	%
			Head	100	%
Flow	17.2	m³/h	P1	0.711	kW
Head	95	kPa	Eta total	63.8	%
Power P1	0.712	kW	Time	5280	h/a
Eta pump+motor	63.8	%=Eta pump * Eta motor	Energy consumption	3757	kWh/Year
Eta total	63.8	%=Eta relative to the duty point	Quantity	1	
Energy consumption	3757	kWh/Year			
CO2 emission	2140	kg/Year			
Price	27.265,00	DKK			
Life cycle cost	185396	DKK/15Years			

Table 8 Pump sizing using static balancing in a temperature-controlled cooling system

Sizing result Type MAGNA3 40-120F	Sizing result Fype MAGNA3 40-120F Load profile										
Quantity 1				1							
Motor			Flow	100		%					
			Head	100		%					
Flow	17.2	m³/h	P1	0.391		kW					
Head	50	kPa	Eta total	61.1		%					
Power P1	0.391	kW	Time	5280		h/a					
Eta pump+motor	61.1	%=Eta pump * Eta motor	Energy consumption	2065		kWh/Year					
Eta total	61.1	%=Eta relative to the duty point	Quantity	1							
Energy consumption	2065	kWh/Year									
CO2 emission	1180	kg/Year									
Price	15.935,00	DKK									
Life cycle cost	102862	DKK/15Years									

Table 9 Pump sizing using dynamic balancing in a temperature-controlled cooling system

In the above example the pump energy saving is 45 % when changing from a static to a dynamic balanced and controlled system. The gross price of the pump is 41% lower in a dynamic system.

In the practical situation the control of the load will be a combination of flow and temperature control. The pump energy savings will be 40–45%. Flow control of the cooling load reduces the electricity consumption, but for the cooling ceiling there will be considerations concerning minimum flow for some types of panels in order to ensure a correct flow distribution inside the cooling panels.

5. Conclusion

Based on a simple analysis, a pump energy saving at 40–45% will be achieved by using dynamic balancing and control valves for each device. The saving is due to a reduced number of static balancing and control valves and therefore in general a reduced head loss in the system. Reduced head loss means reduced pump energy consumption and a reduced pump size.

