

Flow calculation

Flow calculation based on heating/cooling capacity

$$Q = \begin{array}{c} & cp & - \text{heat capacity, kJ/(kg°K)} \\ \hline Q = & \frac{\text{E [kW]}}{\text{cp [kJ/(kg°K)] * ρ [kg/dm³] * $\Delta T[°K]$}} & \rho & - \text{density, kg/dm³} \\ \hline \Delta T & - \text{supply and return temperature difference, °K} \\ \hline E & - \text{heat exchanger capacity, kW} \end{array}$$

Valve selection when medium is different from water. (Flow graphs and tables in the Technote are based on water)

Correction for higher/lower densities than water:

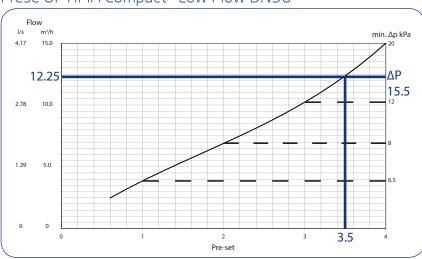
$$Q_d = Q * \sqrt{\rho}$$

Q = Flow water, m³/h

 $Q_d = Flow$ with density different from water, m^3/h

 ρ = fluid density, kg/dm³

Example with Hycool:


 $Q = 10.0 \text{ m}^3/\text{h}$ (calculated flow for cooling capacity)

Hycool density: 1,5 kg/dm³

Flow Q_d for valve selection

 $Q_d = 10.0 * \sqrt{1,5} = 12.25 \text{ m}^3/\text{h}$

Frese OPTIMA Compact · Low Flow DN50

Preset the valve to position 3.5

The required minimum ΔP is 15.5 kPa